Novauris Technologies

Speak, Find. ...EASY!

Single-Input Voice UI for Navigation Systems

Yoon Kim
Novauris Technologies

Benjamin Ao
Alpine Electronics Research of America

2010 Mobile Voice Conference

Company Intros

- Founded in 2002 by key members of Dragon Systems
- Core ASR technology for search and access of very large lists
- Server, embedded and client-server hybrid offerings
- Powering the voice search for Verizon Get It Now Search
- Deployments in US and Japan

- Founded in 1978 as a consolidated subsidiary of Alps Electric Co., Ltd.
- Dubbed a “mobile media solutions” company, Alpine specializes in integrating digital entertainment, driver-assist and navigation in mobile electronic devices for the automotive
- Pioneer in bringing voice technology into the automotive environment
- Alpine technology is deployed in OEM and AFT products world-wide
Outline

- VUI for mobile and navigation applications
- “Natural” voice interfaces
- Destination entry for navigation systems
- Single-input vs multi-input: which is better?
- ASR in car noise
- Experiment: single-input address recognition (by Alpine Electronics Research)
- Summary

VUI for Mobile and Navigation

Observations from real mobile voice search users
- Users want relevant information quickly: “I want it now, and it better be what I had in mind!”
- Users are lazy: “No pain… no pain!”
- Users don’t want to converse with machines
- Users adopt speech input as their preferred mode… but only AFTER building trust in the system VUI

In-car environments: Any different?
- Operating a “mobile device” that is bigger and faster than you! 😊
- The above observations about users are still valid
- Consider user cognitive load and anxiety level in coping with HMI
“Natural Language” Interface: Lessons Learned

- “Natural speech” is not a single specific speaking style
 - it is the most appropriate style for the situation and task
 - it’s the style that speakers adopt when not given specific instructions
- In most voice input modes, “natural” means terse
 - speakers naturally use direct language with the fewest possible number of words
- It’s essential to anticipate the “natural” speaking style for the particular application
 - Because of the trade-off (more flexibility comes at a price of lower accuracy and increased computational load)
- Automotive: Hands-free operation and cognitive load
 - Users may prefer reliability/speed over input flexibility

Destination Entry for Navigation

- Navigation provides convenient, reliable & safe guidance
 - especially to new, unfamiliar destinations
 - BUT destination entry is currently not convenient and not quick
- Effective voice-enabled destination entry system:
 - Accuracy; speed; easy launch & access; intuitive error correction
- Addresses
 - Highly structured and entire input is usually lengthy
 - Order of input varies by region (e.g. US vs Japan)
- POIs
 - Mainly unstructured except when tied with location (e.g. city, state)
 - Need to consider variants and aliases when spoken
Single Input vs Multiple Input

- **Single-input entry**
 - Quick, safe and convenient, if ASR performance is reliable
 - Error correction can be tricky
 - Ideal for power users
 - Lengthy inputs could be a challenge to some users

- **Multi-input w/ confirmation**
 - Tedious and slow
 - Unnatural if order is reversed
 - Error correction is built in
 - Suitable for novice users

- **We could consider a mix of single- and multi-input modes**
 - Start with single-input and fall back to multi-input for error correction
 - More examples in the next slide!
Some Examples of Variants

- **Speak the street number and name:** “555 North Point”
- **Please speak the city and state:** “San Francisco, California”
- **555 North Point St, San Francisco, CA. Is that right?** “Yes”
- **Please speak the street address:** “555 North Point”
- **555 North Point St, San Francisco, CA. Is that right?** “Yes”

Current city/state optional; Location based constraints

Evaluating ASR in Noise: Some Pitfalls

- It’s not reasonable to assume that noise is always steady
 - the most disruptive noises are time-varying
- “SNR” is not well defined for ASR
 - the effect of noise on ASR depends on
 - its distribution over the spectrum
 - the spectrum range and warping used by the ASR
- An increase of N dB in the noise does not make the SNR N dB worse
 - People speak louder in noise
 - the change in SNR is closer to 0.5N dB
ASR in Car Noise

- Car noise is concentrated at low frequencies:
 - <300 Hz, peaking below 100 Hz
 - so ASR much better with 5kHz range rather than telephone band
- The noise is usually steady over an utterance (except in the case of background music or speech from other passengers)
- However, with windows or the sunroof open,
 - the noise has disruptive high-freq components
 - and it's often not steady
 - passing traffic, heavy vehicles braking, horns…
- Novauris finds its single-shot address entry works very well with windows closed at high- and low-speeds
 - though somewhat less reliably with windows open
 - tests by several third parties confirm both observations

Alpine Testing of Novauris ASR: Single-Input US Address Recognition

- Task: NSCS (number-street-city-state)
 - Over 5M unique street names + "natural" house numbers (1~130,000)
 - Optional directional prefix/suffix, street type
- Test set
 - 30 speakers living in the US (10 native, 20 foreign born), 102 addresses each
 - 3,060 utterances recorded in studio, then digitally mixed with noise (road, music, talking) at different SNR levels, resulting in a total of 48,960 wave files
- System requirements and computational resources
 - Batch testing carried out on a desktop PC with 2.8GHz CPU
 - Peak CPU consumption: 50%; Peak memory consumption: 51MB

Note: Novauris embedded NSCS runs on a 400MHz+ CPU with <8MB RAM
Results: Single-Input US Address Entry

- Novauris system does well in road noise, but not so well for background music and talk
- Handles the various address input flexibilities well
- Appears to be ready for deployment in various voice-operated automotive navigation systems

![Accuracy - Native vs Foreign Accent](chart1)

Summary

- Users want VUI for automotive applications that is
 - quick, reliable, convenient, requiring minimum effort
- “Natural speech”: most appropriate mode of speaking given the situation and task
- Navigation destination entry is a critical pain point for users
- Single-input entry: quicker, safer and natural, BUT needs to be reliable
- It is important to understand the characteristics of various types of car noises and its particular effects on the ASR performance
- Tests of our NSCS system show that in steady noise, native users may find our single-input address entry capability useful

![Summary](chart2)
Toward a Desirable Voice
User Interface

Benjamin Ao
Alpine Electronics Research of America

Friday, April 23 (11:20am – 12:30pm)
Track 3: Speech in Consumer Products (Larkspur)