Situated Multimodal Interaction for Local Search

Patrick Ehlen
AT&T Interactive

Michael Johnston
AT&T Labs
Mobile Information Access
Power of Speech

✓ Select from long lists
✓ Combine multiple constraints
Why Multimodal?

- Users should not have to act like their hands are tied behind their back
- Allow users to provide inputs in the most natural way possible
 - “Certain tasks and functions cry out for particular modalities”
 - Rudnicky and Hauptmann 1992
- Adaptation to the physical and social environment
 - Noise / Privacy / Eyes busy / Hands busy
- Superior error handling
 - Avoid error spirals - Oviatt and van Gent 1996
 - Mutual compensation through multimodal fusion
 - Oviatt 1999, Bangalore and Johnston 2000, 2005
Multimodal Local Search

- Interaction with dynamic map to search for businesses
 - MATCH (Johnston et al 2001)
 - SmartKom Mobile, CityBrowser, ...

- Speak4It iPhone app
 - Empower users to refer to businesses or locations using speech, touch, or drawing
 - Don’t always know the name or pronunciation of a location
 - Some locations don’t have a name
 - Multimodal integration
 - Gesture recognition
 - Location salience modeling

“italian restaurants near here”
Multimodal Architecture

Ink Capture:
- "Push to Speak"
- "Push to Interact"

Gesture Recognition:
- Classifier differentiates lines, areas, points ...

Multimodal Integration:
- Fuse interpretations from speech and gesture

Interaction Manager:
- Communicates with Search, Geolocation, and Location Salience services

Results Returned to Client

Services:
- Search
- Geo
- Location Salience Model

Diagram showing the integration of various components in a multimodal architecture, including ink capture, gesture recognition, multimodal integration, and interaction manager, ultimately resulting in results returned to the client.
Situated Interaction
Situated Interaction

in ~80% queries, users speak no location
Grounding Contexts for Salient Location

“italian restaurants”

PHYSICAL
User’s current location (GPS)

GESTURE
Where user touched

GUI
Location shown on map display

VERBAL
Place spoken in prior query

“Sorry I could not find french restaurants in madison”
Which Location Does The User Feel Has Been Grounded?

- **Experiment Strategy:**
 Let users say & do whatever they are inclined to say & do

- Present them with a “salient location disambiguation” screen that will gather user-generated “truth” of the intended context

- Display to 10-20% of unlocated queries for a limited time

- Train a context model using the data
Which Location Does The User Feel Has Been Grounded? (Data Evidence)

- **GESTURE**: 80.19%
- **VERBAL**: 6.91%
- **GUI**: 28.1%
- **PHYSICAL**: 59.14%
Conclusion

✓ Multimodality enables more natural and effective interaction for mobile voice applications
 - “users should not have to act like their hands are tied behind their back”

✓ Speech recognition, Understanding, and Multimodal processing need to be sensitive to the situated nature of mobile interaction
 - e.g. for Location Salience
 • Physical Context
 • GUI context
 • Dialog context