From its foundation, Novauris’s aim has been to provide unparalleled speed and accuracy in spoken selection from very large sets of items.

To this end, we developed a multistage approach to searching lists.

First public demonstration was with 245 million names & addresses (error rate negligible; response time ~ 1 sec).

The efficiency of the search allows it to be run on embedded processors
– even for challenging apps such as all U.S. street addresses

All known third-party tests have found that this approach provides the highest accuracy.

This talk provides some reasons why.
The multistage approach

- Produce approximate phonetic transcription
- Match that against a large list of items, each consisting of networks of phonetic symbols
 - using special fast match techniques
- Produce a short list that has much smaller
- Refine the short list using a more conventional approach
 - Produce an n-best list that is adequate given the UI

We aren’t trying to recognize words

- We don’t normally know or care what words were spoken
 - we’re just trying to associate the input with a list item:
 • an address
 • a POI
 • a person to be phoned
 • an idea (request, question, statement, etc.) to be translated
 • ...
 - each list item corresponds to a network of phonetic symbols
 • or maybe several alternative networks
 - each list item is associated with an action, such as:
 • display some text
 • dial a number
 • record a TV program
 • play some particular music
 • speak a loose translation with the sense of what was said
What are the Advantages of the Multistage Approach?

- For some tasks (e.g. small vocabulary, with short inputs or words in any order) probably no advantage.
- However, for many tasks, there are major advantages, including:
 - It’s an effective fast match
 - symbol-to-symbol comparison vs frame-to-frame
 - It’s particularly good in avoiding pruning errors
 - Both in the symbolic search and the refinement
 - Especially important for long-range dependencies, where an item near the end of an input (e.g. a ZIP code), can help distinguish earlier items (e.g. the street name)

What are “Pruning Errors”?

- Speech recognition normally matches the input speech to sequences of acoustic models
 - matching forwards in time, and
 - allowing for large variations in speaking rates
- This results in large numbers of alignment paths
- To keep computation in bounds, the less promising paths are “pruned out”
- But the path that would have turned out to be best, may well get pruned out — a pruning error

![Diagram of pruning errors](image.png)
How can we Avoid Pruning Errors?

- Conventional speech recognition typically operates with 100 “frames” per sec.
 - that’s around 10 frames per “phoneme”.
 - Each frame typically contains 39 numbers.
 - Weighted Euclidean distances are computed between each frame and the, say, 16 Gaussians representing each of typically 3 states in a phonetic model.
 - That’s \(10 \times 39 \times 16 = 6,240\) multiplies and \(12,480\) adds for just one alignment path between one phonetic model and the frames of one spoken phoneme.
- The corresponding symbolic match process is a single table lookup!
- So symbolic matching can afford to keep many more hypotheses alive — avoiding pruning errors
 - the correct item is almost always in the set passed to the refinement stage
- The refinement process works at the frame rate, but there are small # of candidates, so – again – tight pruning is unnecessary.

Alphanumeric Product Codes*
where multistage ASR is virtually essential

- One customer has 60,000 quasi-random codes of varying length
 - examples: PR7178701, 3624R, 6333514
- Using conventional ASR, reliable recognition would be very challenging
- But errors with Novauris ASR are very rare
 - because fast symbolic matching compares the input with complete patterns without any pruning
 - all the constraints in the sequences are taken into account
 - and grammar compilation from a text list takes \(<4\) sec

*Also discussed in the Angel.com talk this morning
Reverse Hierarchies

- Addresses are a classic example of a list
- But the US has > 5.7 million streets
 - too big to use the simple method employed for product codes
- Solution?
 - Exploit the hierarchical structure:
 - Number, Street, City, State
 - But that’s backwards!
 - No problem! — We do the symbolic search backwards:
 - first match the state, then the city, then the street
 - backtrack if necessary
- For conventional ASR to run backwards, no recognition can begin until the input is complete
 - but with multistage ASR, the phonetic transcription runs forwards
 - this, and the inherent efficiency, is why we can offer single-shot recognition of any US street address on an embedded processor

Flexibility

- Remember we aren’t recognizing words
 - only list items
 (so “Slim Shady” and “Eminem” can be the same item)

- Next slide shows how we can use the pronouncing dictionary to handle variants
Anticipated Variant Forms of the Input

- Because the symbolic match can search many items quickly, we can include many anticipated variations in the items
 - The translation application described this morning has more than 100 variants for some items
- We have compact methods for describing the variants
- For some kinds of variants, a dictionary-based technique can speed up matching to the variants
 - Optional words can be given “null” pronunciations, and certain unimportant words can be given multiple pronunciations.
 - If \(<\text{Title}>=\{ \text{“Mr”, “Mrs”, “Miss”, “Ms”, “Dr”, “Rev”, “Prof”, Null } \) and \(<\text{John}>=\{ \text{“John”, “J.”, Null } \),
 - then \(<\text{Title}><\text{John}><\text{Smith}><\text{Title}><\text{John}>) can match:
 - John Smith, Mr J. Smith, Smith John, Smith Dr J. ...
 - It can also match “John Smith John”, “Mr Smith Mrs” ...
 - But usually that doesn’t matter.

Flexibilities with Probabilities

- Recognition accuracy with alternative forms is optimized by taking probabilities into account
 - Examples:
 - In our Japan railway iPhone app (Friday @ 11:20am, Presidio) making the word for “station” (eki) optional after every station name lowers accuracy, but allowing it with a penalty raises it.
 - In addresses, allowing compass points to be pronounced as letters (e.g. “north-west” = N.W.) works best with a penalty applied to the letter variants.
 - In addresses, house numbers outside the published range for a street are allowed but penalized depending on how far outside the range they are.
 - This allows for extra buildings to be added and prevents errors in citing the number from disrupting the rest of the address.
Thank You

Demo Videos on

www.youtube.com/novauristtechnologies

novauris
Speak, Find. ...EASY!