Interacting with Intelligence

Phil Cohen

Chief Scientist, AI and SVP, Advanced Technology
Are we stuck in a conversational local minimum?

Why? How to get out

Voice AI

- Semantic Parsing
- Dialogue/plan-reasoning

Semantic Parser

Plan-based Reasoning Engine

Collaborative Dialogue

Meaning Representation

Knowledge Graphs encoding facts, actions, ...
Current State of the Practice -- NLU

Statistical “intent” classification ~ Propositional Content

- Easy to train simple classifiers; nice toolkits
- Limited expressiveness to date
- Challenges
 - Multi-“intent”, multi-domain, multi-utterance turns
 - Yes/no questions
 - Anaphora
 - Complex constructions
 - Compositionality
 - Speech act types expressing intentions other than commands/actions
- “Light is better here”
Semantic Parser

An old idea is new again

- Process that maps a sentence to a representation of its semantics, i.e., its meaning
- Meaning is represented as a **logical form**, a logical language including:
 - **Entities**, such as objects in the domain, events, variables, tuples,
 - **Relations** such as predicate/argument structures, types, and
 - **Operators**, including conjunction, quantification, superlatives, comparatives, aggregation, sequence, conditional, variables etc.

- Logical forms are **compositional** – meaning of whole is a function of meaning of parts
- Logical forms can be
 - Vague, with pronouns and referential expressions resolved later via context
 - Fused with LFs from other modalities
 - Input to learning and inference
 - Input to dialogue management subsystems
 - Mapped to backend data sources,
 - Executed to retrieve data or invoke APIs,
Query

How long are the rivers that flow through each state that borders California?

Answer

<table>
<thead>
<tr>
<th>Length</th>
<th>River</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>805</td>
<td>gila</td>
<td>arizona</td>
</tr>
<tr>
<td>1670</td>
<td>snake</td>
<td>oregon</td>
</tr>
<tr>
<td>1953</td>
<td>columbia</td>
<td>oregon</td>
</tr>
<tr>
<td>2333</td>
<td>colorado</td>
<td>arizona</td>
</tr>
<tr>
<td>2333</td>
<td>colorado</td>
<td>nevada</td>
</tr>
</tbody>
</table>

Logical Form:

answer([A,B,C],
 (len(B,A),river(B), traverse(B,C),state(C),
 next_to(C, california), state(california)))
<table>
<thead>
<tr>
<th>Linguistic construction</th>
<th>Geo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relative clauses</td>
<td>that border California</td>
</tr>
<tr>
<td>Comparatives</td>
<td>taller than Mount Shasta</td>
</tr>
<tr>
<td>Superlatives</td>
<td>tallest mountain</td>
</tr>
<tr>
<td>Negation</td>
<td>does not border California</td>
</tr>
<tr>
<td>Anaphora (pronouns)</td>
<td>their population which one ...</td>
</tr>
<tr>
<td>Ordinals</td>
<td>What is the capital of the second one.</td>
</tr>
<tr>
<td>Ordinals + superlatives</td>
<td>What is the capital of the second largest state?</td>
</tr>
<tr>
<td>Ellipsis</td>
<td>Which is taller than shasta?</td>
</tr>
<tr>
<td>Quantifiers</td>
<td>the capital of each state that borders California</td>
</tr>
<tr>
<td>Yes/No Questions</td>
<td>Does Pennsylvania have a larger population than Ohio?</td>
</tr>
<tr>
<td>Conjunction</td>
<td>what is the capital and population of the states that border both Ohio and New York</td>
</tr>
</tbody>
</table>
More complex queries

Query:

How tall is the highest mountain in the state with the smallest population

<table>
<thead>
<tr>
<th>Elevation</th>
<th>Mountain</th>
<th>State</th>
<th>Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>6194</td>
<td>mckinley</td>
<td>alaska</td>
<td>401800</td>
</tr>
</tbody>
</table>

answer([A,B,C,D],
 (highest(B,
 (smallest(D,(state(C),
 population(C,D)))),
 mountain(B),loc(B,C)),
 elevation(B,A))))
More question-answering

More Examples

» What is the capital of each state that borders Ohio?
 • answer([A,B],[capital(A),state(B),loc(A,B),
next_to(B,stateid(ohio)), state(stateid(ohio))])

Yes/No Q’s, comparatives

» Is the tallest mountain in california higher than the tallest
 mountain in Alaska?
 answer(A,[highest(B,[mountain(B),loc(B,stateid(california))],
state(stateid(california))]),
highest(C,[mountain(C),loc(C,stateid(alaska))],
state(stateid(alaska))]),
higher(B,C)->A=yes;A=no)
Other use cases

Complex Commands

Set the temperature to 70 degrees at 8am every other tuesday
Find the latest version of this file and send it to phil and john
Close all the shades except in the kitchen

Standing Orders

When Bob replies to this message, send his reply to my team
Turn off the sprinklers for twenty four hours whenever we get one inch of rain

Prohibitions

Don’t schedule meetings at lunch time

Assertions:

I don’t like text messages when I’m in a meeting
Hybrid Symbolic/Statistical Semantic Parser

<table>
<thead>
<tr>
<th>Priority</th>
<th>Development/Training</th>
<th>Test</th>
<th>Arbitrated</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Symbolic (S)</td>
<td>84.2%</td>
<td>94.3%</td>
</tr>
<tr>
<td></td>
<td>Statistical (St)</td>
<td>91.0%</td>
<td></td>
</tr>
<tr>
<td>Top Priority</td>
<td>N= 3853</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>S: 61.6%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>St: 81.9%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other Priority</td>
<td>Statistical</td>
<td></td>
<td>85.5%</td>
</tr>
<tr>
<td></td>
<td>N= 3963</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>S: 61.6%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>St: 81.9%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N= 883</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Challenges

- Where do the predicates come from?
- Relationship to Ontologies/KBs?
- What are the LF constructions?
- How to map various linguistic constructions to LF constructions?
- How to map those predicates to backend APIs/DBs?
- Tooling
- Deep Learning
- Data collection
Dialogue

- Mostly undeveloped in current virtual assistants

- Finite-state, system driven, speech act sequences, authored, rigid

- Slot-filling (GUS (Bobrow et al., 1977), DARPA’s Air Travel Information System (ATIS), 1990+)

- Task-oriented (Grosz, 1977)

- Most current research and practical dialogue systems are Slot Fillers.
 » Why?
 - Easy to implement, uses statistical “intent” classification, learn policies for responding
 - “Light is better here”,

- Slot-filling is not easily extended to other types of dialogues; should be a special case

- What do we want, and how do we get there?
Collaborative dialogue driven by plan recognition

Please note:
• Contextual reference to song
• Referring to group as “their” and “they”
• System infers purpose of question is for user to see next concert in region
• System offers to buy tickets
• System informs user that plan will fail (venue is sold out)
• System finds another method to see concert
• System offers to buy tickets for user
• System proactively provides seating chart to get information needed to purchase ticket
Common Patterns of Plan Inference

Intent / Plan recognition

- Request(\text{Action}) \rightarrow \text{Action}_1 \rightarrow \text{Effect}_2 \rightarrow \text{Action}_2 \ldots \rightarrow \text{Effect}_n \text{ (top goal)}

- Req(\text{Time of Next concert}) \rightarrow (\text{Date/Loc}) \rightarrow \text{Go to Loc} \rightarrow \text{Attend Concert} \rightarrow \text{Hear musical group}

- Check preconditions

- On failure, find another plan to achieve goal
 - Find substitute objects for goals, edit plan, confirm
 - Other operations possible -- system plans to overcome obstacles; system plans to achieve goals

- Common precondition failures --
 - business must be open to conduct commerce in person \rightarrow \text{find one that is open}
 - Item is in stock \rightarrow \text{find another business selling item, (e.g., concert venue)}
 - Cannot arrive on time for an appointment \rightarrow \text{make another appointment; change vendor}
Use of Knowledge Base

- **Coldplay** is a musical group
 - “Adventure of a lifetime” is a song by Coldplay
- Musical groups play multiple live concerts
- Each live concert takes place at a venue
- Venues sell tickets for concert events
- **Precondition**: To attend an event, one must have a ticket
- There is a limited number of tickets
- Concerts are Entertainment Events, which are Events
- Events take place at times and locations
- People like to view events
- **Precondition**: To view an event, the viewer must be at the same place at same time
- Viewer must travel to the venue

...

Need not be first principles reasoning.